Chrono: a Parallel Physics Library for Rigid-body, Flexible-body, and Fluid Dynamics
نویسندگان
چکیده
This contribution discusses a multi-physics simulation engine, called Chrono, that relies heavily on parallel computing. Chrono aims at simulating the dynamics of systems containing rigid bodies, flexible (compliant) bodies, and fluid-rigid body interaction. To this end, it relies on five modules: equation formulation (modeling), equation solution (simulation), collision detection support, domain decomposition for parallel computing, and post-processing analysis with emphasis on high quality rendering/visualization. For each component we point out how parallel CPU and/or GPU computing have been leveraged to allow for the simulation of applications with millions of degrees of freedom such as rover dynamics on granular terrain, fluid-structure interaction problems, or large-scale flexible body dynamics with friction and contact for applications in polymer analysis.
منابع مشابه
Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics
The last decade witnessed a manifest shift in the microprocessor industry towards chip designs that promote parallel computing. Until recently the privilege of a select group of large research centers, Teraflop computing is becoming a commodity owing to inexpensive GPU cards and multi to many-core x86 processors. This paradigm shift towards large scale parallel computing has been leveraged in C...
متن کاملDraft: Chrono: a Parallel Physics Library for Rigid-body, Flexible-body, and Fluid Dynamics
The last decade witnessed a manifest shift in the microprocessor industry towards chip designs that promote parallel computing. Until recently the privilege of a select group of large research centers, Teraflop computing is becoming a commodity owing to inexpensive GPU cards and multi to many-core x86 processors. This paradigm shift towards large scale parallel computing has been leveraged in C...
متن کاملA High Performance Computing Approach to the Simulation of Fluid-solid Interaction Problems with Rigid and Flexible Components
This work outlines a unified multi-threaded, multi-scale High Performance Computing (HPC) approach for the direct numerical simulation of Fluid-Solid Interaction (FSI) problems. The simulation algorithm relies on the extended Smoothed Particle Hydrodynamics (XSPH) method, which approaches the fluid flow in a Lagrangian framework consistent with the Lagrangian tracking of the solid phase. A gene...
متن کاملRepresenting fluid dynamics as a many - body dynamics problem : a vehicle fording analysis test case
In this report we present the outcome of a study that attempted to answer the following question: for complex fluid-solid interaction problems, can the fluid be represented as a large number of rigid spheres that mutually interact via contact forces? We set out to answer this question by first describing the approach used in Chrono::FSI to analyze coupled fluid-solid interaction problems. This ...
متن کاملManipulation Control of a Flexible Space Free Flying Robot Using Fuzzy Tuning Approach
Cooperative object manipulation control of rigid-flexible multi-body systems in space is studied in this paper. During such tasks, flexible members like solar panels may get vibrated that in turn may lead to some oscillatory disturbing forces on other subsystems, and consequently produces error in the motion of the end-effectors of the cooperative manipulating arms. Therefore, to design and dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013